Systematically explores the relationship between principal component analysis (PCA) and neural networks. Provides a synergistic examination of the mathematical, algorithmic, application and architectural aspects of principal component neural networks. Using a unified formulation, the authors present neural models performing PCA from the Hebbian learning rule and those which use least squares learning rules such as back-propagation. Examines the principles of biological perceptual systems to explain how the brain works. Every chapter contains a selected list of applications examples from diverse areas.
"synopsis" may belong to another edition of this title.
K. I. Diamantaras is a research scientist at Aristotle University in Thessaloniki, Greece. He received his PhD from Princeton University and was formerly a research scientist for Siemans Corporate Research.
S. Y. Kung is Professor of Electrical Engineering at Princeton University and received his PhD from Stanford University. He was formerly a professor of electrical engineering at the University of Southern California.
Principal Component Neural Networks Theory and Applications
Understanding the underlying principles of biological perceptual systems is of vital importance not only to neuroscientists, but, increasingly, to engineers and computer scientists who wish to develop artificial perceptual systems. In this original and groundbreaking work, the authors systematically examine the relationship between the powerful technique of Principal Component Analysis (PCA) and neural networks. Principal Component Neural Networks focuses on issues pertaining to both neural network models (i.e., network structures and algorithms) and theoretical extensions of PCA. In addition, it provides basic review material in mathematics and neurobiology. This book presents neural models originating from both the Hebbian learning rule and least squares learning rules, such as back-propagation. Its ultimate objective is to provide a synergistic exploration of the mathematical, algorithmic, application, and architectural aspects of principal component neural networks. Especially valuable to researchers and advanced students in neural network theory and signal processing, this book offers application examples from a variety of areas, including high-resolution spectral estimation, system identification, image compression, and pattern recognition.
Principal Component Neural Networks Theory and Applications
Understanding the underlying principles of biological perceptual systems is of vital importance not only to neuroscientists, but, increasingly, to engineers and computer scientists who wish to develop artificial perceptual systems. In this original and groundbreaking work, the authors systematically examine the relationship between the powerful technique of Principal Component Analysis (PCA) and neural networks. Principal Component Neural Networks focuses on issues pertaining to both neural network models (i.e., network structures and algorithms) and theoretical extensions of PCA. In addition, it provides basic review material in mathematics and neurobiology. This book presents neural models originating from both the Hebbian learning rule and least squares learning rules, such as back-propagation. Its ultimate objective is to provide a synergistic exploration of the mathematical, algorithmic, application, and architectural aspects of principal component neural networks. Especially valuable to researchers and advanced students in neural network theory and signal processing, this book offers application examples from a variety of areas, including high-resolution spectral estimation, system identification, image compression, and pattern recognition.
"About this title" may belong to another edition of this title.
£ 2.74 shipping within United Kingdom
Destination, rates & speedsSeller: Phatpocket Limited, Waltham Abbey, HERTS, United Kingdom
Condition: Good. Your purchase helps support Sri Lankan Children's Charity 'The Rainbow Centre'. Ex-library, so some stamps and wear, but in good overall condition. Our donations to The Rainbow Centre have helped provide an education and a safe haven to hundreds of children who live in appalling conditions. Seller Inventory # Z1-B-017-02223
Quantity: 1 available
Seller: Buchpark, Trebbin, Germany
Condition: Gut. Zustand: Gut | Seiten: 268 | Sprache: Englisch | Produktart: Bücher. Seller Inventory # 226244/3
Quantity: 1 available
Seller: ThriftBooks-Atlanta, AUSTELL, GA, U.S.A.
Hardcover. Condition: Very Good. No Jacket. May have limited writing in cover pages. Pages are unmarked. ~ ThriftBooks: Read More, Spend Less 1.3. Seller Inventory # G0471054364I4N00
Quantity: 1 available
Seller: ThriftBooks-Dallas, Dallas, TX, U.S.A.
Hardcover. Condition: Very Good. No Jacket. May have limited writing in cover pages. Pages are unmarked. ~ ThriftBooks: Read More, Spend Less 1.3. Seller Inventory # G0471054364I4N00
Quantity: 1 available
Seller: Studibuch, Stuttgart, Germany
hardcover. Condition: Sehr gut. 255 Seiten; 9780471054368.2 Gewicht in Gramm: 1. Seller Inventory # 622046
Quantity: 1 available
Seller: Feldman's Books, Menlo Park, CA, U.S.A.
Hardcover. Condition: Fine. 1st Edition. No Markings. Seller Inventory # 045203
Quantity: 1 available
Seller: HPB-Red, Dallas, TX, U.S.A.
Hardcover. Condition: Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority! Seller Inventory # S_335805765
Quantity: 1 available
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: New. Seller Inventory # 30411-n
Quantity: Over 20 available
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9780471054368_new
Quantity: Over 20 available
Seller: PBShop.store UK, Fairford, GLOS, United Kingdom
HRD. Condition: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Seller Inventory # L1-9780471054368
Quantity: Over 20 available