This book brings together a collection of articles on statistical methods relating to missing data analysis, including multiple imputation, propensity scores, instrumental variables, and Bayesian inference. Covering new research topics and real-world examples which do not feature in many standard texts. The book is dedicated to Professor Don Rubin (Harvard). Don Rubin has made fundamental contributions to the study of missing data.
Key features of the book include:
"synopsis" may belong to another edition of this title.
Andrew Gelman is Professor of Statistics and Professor of Political Science at Columbia University. He has published over 150 articles in statistical theory, methods, and computation, and in applications areas including decision analysis, survey sampling, political science, public health, and policy. His other books are Bayesian Data Analysis (1995, second edition 2003) and Teaching Statistics: A Bag of Tricks (2002).
Statistical techniques that take account of missing data in a clinical trial, census, or other experiments, observational studies, and surveys are of increasing importance. The use of increasingly powerful computers and algorithms has made it possible to study statistical problems from a Bayesian perspective. These topics are highly active research areas and have important applications across a wide range of disciplines.
This book is a collection of articles from leading researchers on statistical methods relating to missing data analysis, causal inference, and statistical modeling, including multiple imputation, propensity scores, instrumental variables, and Bayesian inference. The book is dedicated to Professor Donald Rubin, on the occasion of his 60th birthday, in recognition of his many and wide-ranging contributions to statistics, particularly to the topic of statistical analysis with missing data.
Applied Bayesian Modeling and Causal Inference from Incomplete-Data Perspectives presents an overview with examples of these key topics suitable for researchers in all areas of statistics. It adopts a practical approach suitable for applied statisticians working in social and political sciences, biological and medical sciences, and physical sciences, as well as graduate students of statistics and biostatistics.
Statistical techniques that take account of missing data in a clinical trial, census, or other experiments, observational studies, and surveys are of increasing importance. The use of increasingly powerful computers and algorithms has made it possible to study statistical problems from a Bayesian perspective. These topics are highly active research areas and have important applications across a wide range of disciplines.
This book is a collection of articles from leading researchers on statistical methods relating to missing data analysis, causal inference, and statistical modeling, including multiple imputation, propensity scores, instrumental variables, and Bayesian inference. The book is dedicated to Professor Donald Rubin, on the occasion of his 60th birthday, in recognition of his many and wide-ranging contributions to statistics, particularly to the topic of statistical analysis with missing data.
Applied Bayesian Modeling and Causal Inference from Incomplete-Data Perspectives presents an overview with examples of these key topics suitable for researchers in all areas of statistics. It adopts a practical approach suitable for applied statisticians working in social and political sciences, biological and medical sciences, and physical sciences, as well as graduate students of statistics and biostatistics.
"About this title" may belong to another edition of this title.
FREE shipping within United Kingdom
Destination, rates & speedsFREE shipping from U.S.A. to United Kingdom
Destination, rates & speedsSeller: Romtrade Corp., STERLING HEIGHTS, MI, U.S.A.
Condition: New. Brand New. Soft Cover International Edition. Different ISBN and Cover Image. Priced lower than the standard editions which is usually intended to make them more affordable for students abroad. The core content of the book is generally the same as the standard edition. The country selling restrictions may be printed on the book but is no problem for the self-use. This Item maybe shipped from US or any other country as we have multiple locations worldwide. Seller Inventory # ABNR-242191
Quantity: 2 available
Seller: Better World Books Ltd, Dunfermline, United Kingdom
Condition: Good. Ships from the UK. Used book that is in clean, average condition without any missing pages. Seller Inventory # 46511416-75
Quantity: 1 available
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: New. Seller Inventory # 1996655-n
Quantity: Over 20 available
Seller: PBShop.store UK, Fairford, GLOS, United Kingdom
HRD. Condition: New. New Book. Shipped from UK. Established seller since 2000. Seller Inventory # FW-9780470090435
Quantity: 15 available
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9780470090435_new
Quantity: Over 20 available
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: As New. Unread book in perfect condition. Seller Inventory # 1996655
Quantity: Over 20 available
Seller: Studibuch, Stuttgart, Germany
hardcover. Condition: Befriedigend. 440 Seiten; 9780470090435.4 Gewicht in Gramm: 1. Seller Inventory # 858318
Quantity: 1 available
Seller: CitiRetail, Stevenage, United Kingdom
Hardcover. Condition: new. Hardcover. This book brings together a collection of articles on statistical methods relating to missing data analysis, including multiple imputation, propensity scores, instrumental variables, and Bayesian inference. Covering new research topics and real-world examples which do not feature in many standard texts. The book is dedicated to Professor Don Rubin (Harvard). Don Rubin has made fundamental contributions to the study of missing data. Key features of the book include: Comprehensive coverage of an imporant area for both research and applications.Adopts a pragmatic approach to describing a wide range of intermediate and advanced statistical techniques.Covers key topics such as multiple imputation, propensity scores, instrumental variables and Bayesian inference.Includes a number of applications from the social and health sciences.Edited and authored by highly respected researchers in the area. This book brings together a collection of articles on statistical methods relating to missing data analysis, including multiple imputation, propensity scores, instrumental variables, and Bayesian inference. Covering new research topics and real--world examples which do not feature in many standard texts. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Seller Inventory # 9780470090435
Quantity: 1 available
Seller: THE SAINT BOOKSTORE, Southport, United Kingdom
Hardback. Condition: New. New copy - Usually dispatched within 4 working days. 816. Seller Inventory # B9780470090435
Quantity: Over 20 available
Seller: THE SAINT BOOKSTORE, Southport, United Kingdom
Hardback. Condition: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 816. Seller Inventory # C9780470090435
Quantity: Over 20 available