The origins of the finite element method can be traced back to the 1950s when engineers started to solve numerically structural mechanics problems in aeronautics. Since then, the field of applications has widened steadily and nowadays encompasses nonlinear solid mechanics, fluid/structure interactions, flows in industrial or geophysical settings, multicomponent reactive turbulent flows, mass transfer in porous media, viscoelastic flows in medical sciences, electromagnetism, wave scattering problems, and option pricing (to cite a few examples). Numerous commercial and academic codes based on the finite element method have been developed over the years. The method has been so successful to solve Partial Differential Equations (PDEs) that the term "Finite Element Method" nowadays refers not only to the mere interpolation technique it is, but also to a fuzzy set of PDEs and approximation techniques. The efficiency of the finite element method relies on two distinct ingredi ents: the interpolation capability of finite elements (referred to as the approx imability property in this book) and the ability of the user to approximate his model (mostly a set of PDEs) in a proper mathematical setting (thus guar anteeing continuity, stability, and consistency properties). Experience shows that failure to produce an approximate solution with an acceptable accuracy is almost invariably linked to departure from the mathematical foundations. Typical examples include non-physical oscillations, spurious modes, and lock ing effects. In most cases, a remedy can be designed if the mathematical framework is properly set up.
"synopsis" may belong to another edition of this title.
This book presents the mathematical theory of finite elements, starting from basic results on approximation theory and finite element interpolation and building up to more recent research topics, such as and Discontinuous Galerkin, subgrid viscosity stabilization, and a posteriori error estimation.
The body of the text is organized into three parts plus two appendices collecting the functional analysis results used in the book. The first part develops the theoretical basis for the finite element method and emphasizes the fundamental role of inf-sup conditions. The second party addresses various applications encompassing elliptic PDE's, mixed formulations, first-order PDEs, and the time-dependent versions of these problems. The third part covers implementation issues and should provide readers with most of the practical details needed to write or understand a finite element code.
Written at the graduate level, the text contains numerous examples and exercises and is intended to serve as a graduate textbook. Depending on one's interests, several reading paths can be followed, emphasizing either theoretical results, numerical algorithms, code efficiency, or applications in the engineering sciences.
The book will be useful to researchers and graduate students in mathematics, computer science and engineering.
"About this title" may belong to another edition of this title.
£ 13.37 shipping from Germany to United Kingdom
Destination, rates & speedsSeller: SpringBooks, Berlin, Germany
Hardcover. Condition: As New. will be dispatched immediately. Seller Inventory # CE-2304C-PETUNIE-08-2000
Quantity: 1 available
Seller: Lavendier Books, Foster, RI, U.S.A.
hardcover. Condition: Very Good. Springer Verlag; New York, 2004. Hardcover. A Very Good, binding sturdy and intact, some handling/scuffing to boards, cocked, mild crimping to spine edges, small dent top front board edge, slightly bowed boards, without Dust wrapper. A nice, clean and unmarked copy. 4to[quarto or approx. 11.5 x 13.5 inches], 524pp., nomenclature, references, indexed. We pack securely and ship daily with delivery confirmation on every book. The picture on the listing page is of the actual book for sale. Additional Scan(s) are available for any item, please inquire.Please note: Oversized books/sets MAY require additional postage then what is quoted for 2.2lb book. Seller Inventory # SKU1043856
Quantity: 1 available
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: New. Seller Inventory # 2292401-n
Quantity: 1 available
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: As New. Unread book in perfect condition. Seller Inventory # 2292401
Quantity: 1 available
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In English. Seller Inventory # ria9780387205748_new
Quantity: Over 20 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Buch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The origins of the finite element method can be traced back to the 1950s when engineers started to solve numerically structural mechanics problems in aeronautics. Since then, the field of applications has widened steadily and nowadays encompasses nonlinear solid mechanics, fluid/structure interactions, flows in industrial or geophysical settings, multicomponent reactive turbulent flows, mass transfer in porous media, viscoelastic flows in medical sciences, electromagnetism, wave scattering problems, and option pricing (to cite a few examples). Numerous commercial and academic codes based on the finite element method have been developed over the years. The method has been so successful to solve Partial Differential Equations (PDEs) that the term 'Finite Element Method' nowadays refers not only to the mere interpolation technique it is, but also to a fuzzy set of PDEs and approximation techniques. The efficiency of the finite element method relies on two distinct ingredi ents: the interpolation capability of finite elements (referred to as the approx imability property in this book) and the ability of the user to approximate his model (mostly a set of PDEs) in a proper mathematical setting (thus guar anteeing continuity, stability, and consistency properties). Experience shows that failure to produce an approximate solution with an acceptable accuracy is almost invariably linked to departure from the mathematical foundations. Typical examples include non-physical oscillations, spurious modes, and lock ing effects. In most cases, a remedy can be designed if the mathematical framework is properly set up. 544 pp. Englisch. Seller Inventory # 9780387205748
Quantity: 2 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Buch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - The origins of the finite element method can be traced back to the 1950s when engineers started to solve numerically structural mechanics problems in aeronautics. Since then, the field of applications has widened steadily and nowadays encompasses nonlinear solid mechanics, fluid/structure interactions, flows in industrial or geophysical settings, multicomponent reactive turbulent flows, mass transfer in porous media, viscoelastic flows in medical sciences, electromagnetism, wave scattering problems, and option pricing (to cite a few examples). Numerous commercial and academic codes based on the finite element method have been developed over the years. The method has been so successful to solve Partial Differential Equations (PDEs) that the term 'Finite Element Method' nowadays refers not only to the mere interpolation technique it is, but also to a fuzzy set of PDEs and approximation techniques. The efficiency of the finite element method relies on two distinct ingredi ents: the interpolation capability of finite elements (referred to as the approx imability property in this book) and the ability of the user to approximate his model (mostly a set of PDEs) in a proper mathematical setting (thus guar anteeing continuity, stability, and consistency properties). Experience shows that failure to produce an approximate solution with an acceptable accuracy is almost invariably linked to departure from the mathematical foundations. Typical examples include non-physical oscillations, spurious modes, and lock ing effects. In most cases, a remedy can be designed if the mathematical framework is properly set up. Seller Inventory # 9780387205748
Quantity: 2 available
Seller: THE SAINT BOOKSTORE, Southport, United Kingdom
Hardback. Condition: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 964. Seller Inventory # C9780387205748
Quantity: Over 20 available
Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany
Buch. Condition: Neu. This item is printed on demand - Print on Demand Titel. Neuware -The origins of the finite element method can be traced back to the 1950s when engineers started to solve numerically structural mechanics problems in aeronautics. Since then, the field of applications has widened steadily and nowadays encompasses nonlinear solid mechanics, fluid/structure interactions, flows in industrial or geophysical settings, multicomponent reactive turbulent flows, mass transfer in porous media, viscoelastic flows in medical sciences, electromagnetism, wave scattering problems, and option pricing (to cite a few examples). Numerous commercial and academic codes based on the finite element method have been developed over the years. The method has been so successful to solve Partial Differential Equations (PDEs) that the term 'Finite Element Method' nowadays refers not only to the mere interpolation technique it is, but also to a fuzzy set of PDEs and approximation techniques. The efficiency of the finite element method relies on two distinct ingredi ents: the interpolation capability of finite elements (referred to as the approx imability property in this book) and the ability of the user to approximate his model (mostly a set of PDEs) in a proper mathematical setting (thus guar anteeing continuity, stability, and consistency properties). Experience shows that failure to produce an approximate solution with an acceptable accuracy is almost invariably linked to departure from the mathematical foundations. Typical examples include non-physical oscillations, spurious modes, and lock ing effects. In most cases, a remedy can be designed if the mathematical framework is properly set up.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 544 pp. Englisch. Seller Inventory # 9780387205748
Quantity: 1 available
Seller: moluna, Greven, Germany
Gebunden. Condition: New. Unique in that it manages to cover three different aspects of the finite element method in a single volume: the rigorous mathematical theory, applications, and practical implementations of the methodUnique in that it manages to cover three dif. Seller Inventory # 5909058
Quantity: Over 20 available