The basic stochastic approximation algorithms introduced by Robbins and MonroandbyKieferandWolfowitzintheearly1950shavebeenthesubject of an enormous literature, both theoretical and applied. This is due to the large number of applications and the interesting theoretical issues in the analysis of “dynamically de?ned” stochastic processes. The basic paradigm is a stochastic di?erence equation such as ? = ? + Y , where ? takes n+1 n n n n its values in some Euclidean space, Y is a random variable, and the “step n size” > 0 is small and might go to zero as n??. In its simplest form, n ? is a parameter of a system, and the random vector Y is a function of n “noise-corrupted” observations taken on the system when the parameter is set to ? . One recursively adjusts the parameter so that some goal is met n asymptotically. Thisbookisconcernedwiththequalitativeandasymptotic properties of such recursive algorithms in the diverse forms in which they arise in applications. There are analogous continuous time algorithms, but the conditions and proofs are generally very close to those for the discrete time case. The original work was motivated by the problem of ?nding a root of a continuous function g ¯(?), where the function is not known but the - perimenter is able to take “noisy” measurements at any desired value of ?. Recursive methods for root ?nding are common in classical numerical analysis, and it is reasonable to expect that appropriate stochastic analogs would also perform well.
"synopsis" may belong to another edition of this title.
This revised and expanded second edition presents a thorough development of the modern theory of stochastic approximation or recursive stochastic algorithms for both constrained and unconstrained problems. There is a complete development of both probability one and weak convergence methods for very general noise processes. The proofs of convergence use the ODE method, the most powerful to date. The assumptions and proof methods are designed to cover the needs of recent applications. The development proceeds from simple to complex problems, allowing the underlying ideas to be more easily understood. Rate of convergence, iterate averaging, high-dimensional problems, stability-ODE methods, two time scale, asynchronous and decentralized algorithms, state-dependent noise, stability methods for correlated noise, perturbed test function methods, and large deviations methods are covered. Many motivating examples from learning theory, ergodic cost problems for discrete event systems, wireless communications, adaptive control, signal processing, and elsewhere illustrate the applications of the theory.
"About this title" may belong to another edition of this title.
£ 25.87 shipping from U.S.A. to United Kingdom
Destination, rates & speeds£ 22.18 shipping from U.S.A. to United Kingdom
Destination, rates & speedsSeller: SecondSale, Montgomery, IL, U.S.A.
Condition: Good. Item in good condition. Textbooks may not include supplemental items i.e. CDs, access codes etc. Seller Inventory # 00087658410
Quantity: 1 available
Seller: Magus Books Seattle, Seattle, WA, U.S.A.
Hardcover. Condition: VG. used hardcover copy in illustrated boards, no jacket, as issued. light shelfwear, corners perhaps slightly bumped. pages and binding are clean, straight and tight. there are no marks to the text or other serious flaws. Seller Inventory # 1453331
Quantity: 1 available
Seller: Salish Sea Books, Bellingham, WA, U.S.A.
Condition: Very Good. 2. Very Good; Hardcover; Light wear to the covers; Unblemished textblock edges; The endpapers and all text pages are clean and unmarked; The binding is excellent with a straight spine; This book will be shipped in a sturdy cardboard box with foam padding; Medium Format (8.5" - 9.75" tall); Tan and yellow covers with title in yellow lettering; 2nd Edition; 2003, Springer-Verlag Publishing; 500 pages; "Stochastic Approximation and Recursive Algorithms and Applications (Stochastic Modelling and Applied Probability, 35)," by Harold Kushner & G. George Yin. Seller Inventory # SKU-044AT02105011
Quantity: 1 available
Seller: Toscana Books, AUSTIN, TX, U.S.A.
Hardcover. Condition: new. Excellent Condition.Excels in customer satisfaction, prompt replies, and quality checks. Seller Inventory # Scanned0387008942
Quantity: 1 available
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In English. Seller Inventory # ria9780387008943_new
Quantity: Over 20 available
Seller: California Books, Miami, FL, U.S.A.
Condition: New. Seller Inventory # I-9780387008943
Quantity: Over 20 available
Seller: moluna, Greven, Germany
Gebunden. Condition: New. This book presents a thorough development of the modern theory of stochastic approximation or recursive stochastic algorithms for both constrained and unconstrained problems. This second edition is a thorough revision, although the main features and stru. Seller Inventory # 458427650
Quantity: Over 20 available
Seller: Lucky's Textbooks, Dallas, TX, U.S.A.
Condition: New. Seller Inventory # ABLIING23Feb2215580170578
Quantity: Over 20 available
Seller: Mispah books, Redhill, SURRE, United Kingdom
Hardcover. Condition: Like New. Like New. book. Seller Inventory # ERICA77303870089426
Quantity: 1 available
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New. pp. 500 2nd Edition. Seller Inventory # 26280653
Quantity: 4 available