Artificial Intelligence for Renewable Energy Systems addresses the energy industries remarkable move from traditional power generation to a cost-effective renewable energy system, and most importantly, the paradigm shift from a market-based cost of the commodity to market-based technological advancements. Featuring recent developments and state-of-the-art applications of artificial intelligence in renewable energy systems design, the book emphasizes how AI supports effective prediction for energy generation, electric grid related line loss prediction, load forecasting, and for predicting equipment failure prevention.
Looking at approaches in system modeling and performance prediction of renewable energy systems, this volume covers power generation systems, building service systems and combustion processes, exploring advances in machine learning, artificial neural networks, fuzzy logic, genetic algorithms and hybrid mechanisms.
"synopsis" may belong to another edition of this title.
Ashutosh Kumar Dubey is an Associate Professor in the Department of Computer Science and Engineering at Chitkara University, Himachal Pradesh, India. He is also a Postdoctoral Fellow of the Ingenium Research Group Lab, Universidad
de Castilla-La Mancha, Ciudad Real, Spain.
Dr. Sushil Kumar Narang is Dean and an Associate Professor in the Department of Computer Science & Engineering at Chitkara University, Rajpura, Punjab since 2019. From 2006-2019, He was head of IT department at SAS Institute of IT & Research, Mohali, Punjab. From 1996-2006 he was Assistant Professor at Department of Computer Science & Applications, MLN College, Yamuna agar, Haryana. He Completed his Ph.D. at Panjab University, Chandigarh. His Research on “Feature Extraction and Neural Network Classifiers for Optical Character Recognition for Good quality handwritten Gurmukhi and Devnagari Characters” focused on various image processing, machine as well as deep learning algorithms. His research interests lie in the area of programming languages, ranging from theory to design to implementation, Image Processing, Data Analytics and Machine Learning. He has collaborated actively with researchers in several other disciplines of computer science, particularly Machine Learning on real world use cases.
Dr. Abhishek Kumar is a professor and post-doctorate fellow in computer science at Ingenium Research Group, based at Universidad De Castilla-La Mancha in Spain. He has been teaching in academia for more than 8 years, and published more than 50 articles in reputed, peer reviewed national and international journals, books, and conferences. His research area includes artificial intelligence, image processing, computer vision, data mining, and machine learning.
Dr. Vicente García-Díaz is a Software Engineer and has a PhD in Computer Science. He is an Associate Professor in the Department of Computer Science at the University of Oviedo. He is also part of the editorial and advisory board of several journals and has been editor of several special issues in books and journals. He has supervised 80+ academic projects and published 80+ research papers in journals, conferences and books. His research interests include decision support systems, Domain-Specific languages and eLearning.
Dr. Arun Lal Srivastav is an Associate Professor in the Department of Applied Sciences at Chitkara University, Himachal Pradesh, India.
Artificial Intelligence for Renewable Energy Systems addresses the energy industries remarkable move from traditional power generation to a cost-effective renewable energy system, and most importantly, the paradigm shift from a market-based cost of the commodity to market-based technological advancements. Featuring recent developments and state-of-the-art applications of artificial intelligence in renewable energy systems design, the book emphasizes how AI supports effective prediction for energy generation, electric grid related line loss prediction, load forecasting, and for predicting equipment failure prevention.
Looking at approaches in system modeling and performance prediction of renewable energy systems, this volume covers power generation systems, building service systems and combustion processes, exploring advances in machine learning, artificial neural networks, fuzzy logic, genetic algorithms and hybrid mechanisms.
"About this title" may belong to another edition of this title.
£ 14.90 shipping from U.S.A. to United Kingdom
Destination, rates & speeds£ 2.38 shipping from Italy to United Kingdom
Destination, rates & speedsSeller: Brook Bookstore On Demand, Napoli, NA, Italy
Condition: new. Questo è un articolo print on demand. Seller Inventory # ebb6adfcc11698125a373a8aa5e67b29
Quantity: Over 20 available
Seller: Majestic Books, Hounslow, United Kingdom
Condition: New. Seller Inventory # 391517998
Quantity: 3 available
Seller: Revaluation Books, Exeter, United Kingdom
Paperback. Condition: Brand New. 500 pages. 9.00x6.00x0.92 inches. In Stock. Seller Inventory # __0323903967
Quantity: 2 available
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: New. Seller Inventory # 43817428-n
Quantity: Over 20 available
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New. 1st edition NO-PA16APR2015-KAP. Seller Inventory # 26388081905
Quantity: 3 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Artificial Intelligence for Renewable Energy Systems addresses the energy industries remarkable move from traditional power generation to a cost-effective renewable energy system, and most importantly, the paradigm shift from a market-based cost of the commodity to market-based technological advancements. Featuring recent developments and state-of-the-art applications of artificial intelligence in renewable energy systems design, the book emphasizes how AI supports effective prediction for energy generation, electric grid related line loss prediction, load forecasting, and for predicting equipment failure prevention. Looking at approaches in system modeling and performance prediction of renewable energy systems, this volume covers power generation systems, building service systems and combustion processes, exploring advances in machine learning, artificial neural networks, fuzzy logic, genetic algorithms and hybrid mechanisms. Englisch. Seller Inventory # 9780323903967
Quantity: 2 available
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: As New. Unread book in perfect condition. Seller Inventory # 43817428
Quantity: Over 20 available
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: New. Seller Inventory # 43817428-n
Quantity: Over 20 available
Seller: moluna, Greven, Germany
Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Artificial Intelligence for Renewable Energy Systems addresses the energy industries remarkable move from traditional power generation to a cost-effective renewable energy system, and most importantly, the paradigm shift from a market-based cost o. Seller Inventory # 506456932
Quantity: Over 20 available
Seller: Biblios, Frankfurt am main, HESSE, Germany
Condition: New. Seller Inventory # 18388081915
Quantity: 3 available