John Kruschke
Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan
### ISBN 13: 9780124058880

There is an explosion of interest in Bayesian statistics, primarily because recently created computational methods have finally made Bayesian analysis obtainable to a wide audience. *Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan* provides an accessible approach to Bayesian data analysis, as material is explained clearly with concrete examples. The book begins with the basics, including essential concepts of probability and random sampling, and gradually progresses to advanced hierarchical modeling methods for realistic data. Included are step-by-step instructions on how to conduct Bayesian data analyses in the popular and free software R and WinBugs. This book is intended for first-year graduate students or advanced undergraduates. It provides a bridge between undergraduate training and modern Bayesian methods for data analysis, which is becoming the accepted research standard. Knowledge of algebra and basic calculus is a prerequisite.

New to this Edition (partial list):

- There are all new programs in JAGS and Stan. The new programs are designed to be much easier to use than the scripts in the first edition. In particular, there are now compact high-level scripts that make it easy to run the programs on your own data sets. This new programming was a major undertaking by itself.
- The introductory Chapter 2, regarding the basic ideas of how Bayesian inference re-allocates credibility across possibilities, is completely rewritten and greatly expanded.
- There are completely new chapters on the programming languages R (Ch. 3), JAGS (Ch. 8), and Stan (Ch. 14). The lengthy new chapter on R includes explanations of data files and structures such as lists and data frames, along with several utility functions. (It also has a new poem that I am particularly pleased with.) The new chapter on JAGS includes explanation of the RunJAGS package which executes JAGS on parallel computer cores. The new chapter on Stan provides a novel explanation of the concepts of Hamiltonian Monte Carlo. The chapter on Stan also explains conceptual differences in program flow between it and JAGS.
- Chapter 5 on Bayes' rule is greatly revised, with a new emphasis on how Bayes' rule re-allocates credibility across parameter values from prior to posterior. The material on model comparison has been removed from all the early chapters and integrated into a compact presentation in Chapter 10.
- What were two separate chapters on the Metropolis algorithm and Gibbs sampling have been consolidated into a single chapter on MCMC methods (as Chapter 7). There is extensive new material on MCMC convergence diagnostics in Chapters 7 and 8. There are explanations of autocorrelation and effective sample size. There is also exploration of the stability of the estimates of the HDI limits. New computer programs display the diagnostics, as well.
- Chapter 9 on hierarchical models includes extensive new and unique material on the crucial concept of shrinkage, along with new examples.
- All the material on model comparison, which was spread across various chapters in the first edition, in now consolidated into a single focused chapter (Ch. 10) that emphasizes its conceptualization as a case of hierarchical modeling.
- Chapter 11 on null hypothesis significance testing is extensively revised. It has new material for introducing the concept of sampling distribution. It has new illustrations of sampling distributions for various stopping rules, and for multiple tests.
- Chapter 12, regarding Bayesian approaches to null value assessment, has new material about the region of practical equivalence (ROPE), new examples of accepting the null value by Bayes factors, and new explanation of the Bayes factor in terms of the Savage-Dickey method.
- Chapter 13, regarding statistical power and sample

*"synopsis" may belong to another edition of this title.*

*"fills a gaping hole in what is currently available, and will serve to create its own market” Prof. Michael Lee, U. of Cal., Irvine; pres. Society for Mathematical Psych. **"has the potential to change the way most cognitive scientists and experimental psychologists approach the planning and analysis of their experiments" --iProf. Geoffrey Iverson, U. of Cal., Irvine; past pres. Society for Mathematical Psych. **"better than others for reasons stylistic.... buy it*

*"About this title" may belong to another edition of this title.*

Published by
Elsevier Science & Technology

ISBN 10: 0124058884
ISBN 13: 9780124058880

New
Quantity Available: 4

Seller

Rating

**Book Description **Elsevier Science & Technology. Book Condition: Brand New. Ships SAME or NEXT business day. We Ship to APO/FPO addr. Choose EXPEDITED shipping and receive in 2-5 business days within the United States. See our member profile for customer support contact info. We have an easy return policy. Bookseller Inventory # 41809425

More Information About This Seller | Ask Bookseller a Question

ISBN 10: 0124058884
ISBN 13: 9780124058880

New
Quantity Available: 1

Seller

Rating

**Book Description **Book Condition: New. New Book. Bookseller Inventory # 0124058884SBK

More Information About This Seller | Ask Bookseller a Question

Published by
Academic Press
(2014)

ISBN 10: 0124058884
ISBN 13: 9780124058880

New
Hardcover
Quantity Available: 1

Seller

Rating

**Book Description **Academic Press, 2014. Book Condition: New. Brand New, Unread Copy in Perfect Condition. A+ Customer Service! Summary: "I think it fills a gaping hole in what is currently available, and will serve to create its own market as researchers and their students transition towards the routine application of Bayesian statistical methods." -Prof. Michael lee, University of California, Irvine, and president of the Society for Mathematical Psychology "Kruschke's text covers a much broader range of traditional experimental designs.has the potential to change the way most cognitive scientists and experimental psychologists approach the planning and analysis of their experiments" -Prof. Geoffrey Iverson, University of California, Irvine, and past president of the Society for Mathematical Psychology "John Kruschke has written a book on Statistics. It's better than others for reasons stylistic. It also is better because itis Bayesian. To find out why, buy it -- it's truly amazin'!"-James L. (Jay) McClelland, Lucie Stern Professor & Chair, Dept. Of Psychology, Standford University. Bookseller Inventory # ABE_book_new_0124058884

More Information About This Seller | Ask Bookseller a Question

ISBN 10: 0124058884
ISBN 13: 9780124058880

New
Quantity Available: 5

Seller

Rating

**Book Description **Book Condition: New. Bookseller Inventory # 21728649-n

More Information About This Seller | Ask Bookseller a Question

Published by
Elsevier Science Publishing Co Inc, United States
(2015)

ISBN 10: 0124058884
ISBN 13: 9780124058880

New
Hardcover
Quantity Available: 10

Seller

Rating

**Book Description **Elsevier Science Publishing Co Inc, United States, 2015. Hardback. Book Condition: New. 2nd Revised edition. 236 x 196 mm. Language: English . Brand New Book. There is an explosion of interest in Bayesian statistics, primarily because recently created computational methods have finally made Bayesian analysis obtainable to a wide audience. Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan provides an accessible approach to Bayesian data analysis, as material is explained clearly with concrete examples. The book begins with the basics, including essential concepts of probability and random sampling, and gradually progresses to advanced hierarchical modeling methods for realistic data. Included are step-by-step instructions on how to conduct Bayesian data analyses in the popular and free software R and WinBugs. This book is intended for first-year graduate students or advanced undergraduates. It provides a bridge between undergraduate training and modern Bayesian methods for data analysis, which is becoming the accepted research standard. Knowledge of algebra and basic calculus is a prerequisite. New to this Edition (partial list): * There are all new programs in JAGS and Stan. The new programs are designed to be much easier to use than the scripts in the first edition. In particular, there are now compact high-level scripts that make it easy to run the programs on your own data sets. This new programming was a major undertaking by itself.* The introductory Chapter 2, regarding the basic ideas of how Bayesian inference re-allocates credibility across possibilities, is completely rewritten and greatly expanded.* There are completely new chapters on the programming languages R (Ch. 3), JAGS (Ch. 8), and Stan (Ch. 14). The lengthy new chapter on R includes explanations of data files and structures such as lists and data frames, along with several utility functions. (It also has a new poem that I am particularly pleased with.) The new chapter on JAGS includes explanation of the RunJAGS package which executes JAGS on parallel computer cores. The new chapter on Stan provides a novel explanation of the concepts of Hamiltonian Monte Carlo. The chapter on Stan also explains conceptual differences in program flow between it and JAGS.* Chapter 5 on Bayes rule is greatly revised, with a new emphasis on how Bayes rule re-allocates credibility across parameter values from prior to posterior. The material on model comparison has been removed from all the early chapters and integrated into a compact presentation in Chapter 10.* What were two separate chapters on the Metropolis algorithm and Gibbs sampling have been consolidated into a single chapter on MCMC methods (as Chapter 7). There is extensive new material on MCMC convergence diagnostics in Chapters 7 and 8. There are explanations of autocorrelation and effective sample size. There is also exploration of the stability of the estimates of the HDI limits. New computer programs display the diagnostics, as well.* Chapter 9 on hierarchical models includes extensive new and unique material on the crucial concept of shrinkage, along with new examples.* All the material on model comparison, which was spread across various chapters in the first edition, in now consolidated into a single focused chapter (Ch. 10) that emphasizes its conceptualization as a case of hierarchical modeling.* Chapter 11 on null hypothesis significance testing is extensively revised. It has new material for introducing the concept of sampling distribution. It has new illustrations of sampling distributions for various stopping rules, and for multiple tests.* Chapter 12, regarding Bayesian approaches to null value assessment, has new material about the region of practical equivalence (ROPE), new examples of accepting the null value by Bayes factors, and new explanation of the Bayes factor in terms of the Savage-Dickey method.* Chapter 13, regarding statistical power and sample size, has an extensive new section on sequential testing, and making the research goal be precision of estimation instead of rejecting or accepting a particu. Bookseller Inventory # AA59780124058880

More Information About This Seller | Ask Bookseller a Question

Published by
Academic Press
(2014)

ISBN 10: 0124058884
ISBN 13: 9780124058880

New
Quantity Available: > 20

Seller

Rating

**Book Description **Academic Press, 2014. HRD. Book Condition: New. New Book. Shipped from UK in 4 to 14 days. Established seller since 2000. Bookseller Inventory # FD-9780124058880

More Information About This Seller | Ask Bookseller a Question

Published by
Academic Press
(2014)

ISBN 10: 0124058884
ISBN 13: 9780124058880

New
Hardcover
Quantity Available: 1

Seller

Rating

**Book Description **Academic Press, 2014. Hardcover. Book Condition: New. book. Bookseller Inventory # 0124058884

More Information About This Seller | Ask Bookseller a Question

Published by
Elsevier Science Publishing Co Inc, United States
(2015)

ISBN 10: 0124058884
ISBN 13: 9780124058880

New
Hardcover
Quantity Available: 10

Seller

Rating

**Book Description **Elsevier Science Publishing Co Inc, United States, 2015. Hardback. Book Condition: New. 2nd Revised edition. 236 x 196 mm. Language: English . Brand New Book. There is an explosion of interest in Bayesian statistics, primarily because recently created computational methods have finally made Bayesian analysis obtainable to a wide audience. Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan provides an accessible approach to Bayesian data analysis, as material is explained clearly with concrete examples. The book begins with the basics, including essential concepts of probability and random sampling, and gradually progresses to advanced hierarchical modeling methods for realistic data. Included are step-by-step instructions on how to conduct Bayesian data analyses in the popular and free software R and WinBugs. This book is intended for first-year graduate students or advanced undergraduates. It provides a bridge between undergraduate training and modern Bayesian methods for data analysis, which is becoming the accepted research standard. Knowledge of algebra and basic calculus is a prerequisite. New to this Edition (partial list): * There are all new programs in JAGS and Stan. The new programs are designed to be much easier to use than the scripts in the first edition. In particular, there are now compact high-level scripts that make it easy to run the programs on your own data sets. This new programming was a major undertaking by itself.* The introductory Chapter 2, regarding the basic ideas of how Bayesian inference re-allocates credibility across possibilities, is completely rewritten and greatly expanded.* There are completely new chapters on the programming languages R (Ch. 3), JAGS (Ch. 8), and Stan (Ch. 14). The lengthy new chapter on R includes explanations of data files and structures such as lists and data frames, along with several utility functions. (It also has a new poem that I am particularly pleased with.) The new chapter on JAGS includes explanation of the RunJAGS package which executes JAGS on parallel computer cores. The new chapter on Stan provides a novel explanation of the concepts of Hamiltonian Monte Carlo. The chapter on Stan also explains conceptual differences in program flow between it and JAGS.* Chapter 5 on Bayes rule is greatly revised, with a new emphasis on how Bayes rule re-allocates credibility across parameter values from prior to posterior. The material on model comparison has been removed from all the early chapters and integrated into a compact presentation in Chapter 10.* What were two separate chapters on the Metropolis algorithm and Gibbs sampling have been consolidated into a single chapter on MCMC methods (as Chapter 7). There is extensive new material on MCMC convergence diagnostics in Chapters 7 and 8. There are explanations of autocorrelation and effective sample size. There is also exploration of the stability of the estimates of the HDI limits. New computer programs display the diagnostics, as well.* Chapter 9 on hierarchical models includes extensive new and unique material on the crucial concept of shrinkage, along with new examples.* All the material on model comparison, which was spread across various chapters in the first edition, in now consolidated into a single focused chapter (Ch. 10) that emphasizes its conceptualization as a case of hierarchical modeling.* Chapter 11 on null hypothesis significance testing is extensively revised. It has new material for introducing the concept of sampling distribution. It has new illustrations of sampling distributions for various stopping rules, and for multiple tests.* Chapter 12, regarding Bayesian approaches to null value assessment, has new material about the region of practical equivalence (ROPE), new examples of accepting the null value by Bayes factors, and new explanation of the Bayes factor in terms of the Savage-Dickey method.* Chapter 13, regarding statistical power and sample size, has an extensive new section on sequential testing, and making the research goal be precision of estimation instead of rejecting or accepting a particu. Bookseller Inventory # AA59780124058880

More Information About This Seller | Ask Bookseller a Question

Published by
Academic Press Inc 2014-11-03
(2014)

ISBN 10: 0124058884
ISBN 13: 9780124058880

New
Quantity Available: 5

Seller

Rating

**Book Description **Academic Press Inc 2014-11-03, 2014. Book Condition: New. Brand new book, sourced directly from publisher. Dispatch time is 24-48 hours from our warehouse. Book will be sent in robust, secure packaging to ensure it reaches you securely. Bookseller Inventory # NU-LBR-01446992

More Information About This Seller | Ask Bookseller a Question

Published by
Elsevier Science Publishing Co Inc 2014-12-15, San Diego
(2014)

ISBN 10: 0124058884
ISBN 13: 9780124058880

New
Hardcover
Quantity Available: 10

Seller

Rating

**Book Description **Elsevier Science Publishing Co Inc 2014-12-15, San Diego, 2014. hardback. Book Condition: New. Bookseller Inventory # 9780124058880

More Information About This Seller | Ask Bookseller a Question